Perception

Maneesh Agrawala

CS 448B: Visualization
Winter 2020

1

Announcements

Assignment 3: Dynamic Queries

Create a small interactive dynamic query application similar to Homefinder, but for South Bay Restaurant Data.

- 1. Implement interface
- 2. Submit the application and a short write-up on canvas

Can work alone or in pairs

Due before class on Feb 10, 2020

4

Perception

Mackinlay's effectiveness criteria

Effectiveness

A visualization is more effective than another visualization if the information conveyed by one visualization is more readily perceived than the information in the other visualization.

Mackinlay's	ranking o	ot encodings
QUANTITATIVE	ORDINAL	NOMINAL
Position Length Angle Slope Area (Size) Volume Density (Val) Color Sat Color Hue Texture Connection Containment Shape	Position Density (Val) Color Sat Color Hue Texture Connection Containment Length Angle Slope Area (Size) Volume Shape	Position Color Hue Texture Connection Containment Density (Val) Color Sat Shape Length Angle Slope Area Volume

Topics

Signal Detection
Magnitude Estimation
Pre-Attentive Visual Processing
Using Multiple Visual Encodings
Gestalt Grouping
Change Blindness

8

Detection

Just noticeable difference

JND (Weber's Law)

$$\Delta S = k \frac{\Delta I}{I}$$

- Ratios more important than magnitude
- Most continuous variations in stimuli are perceived in discrete steps

12

Information in color and value

Value is perceived as ordered

∴ Encode ordinal variables (O)

∴ Encode continuous variables (Q) [not as well]

Hue is normally perceived as unordered

∴ Encode nominal variables (N) using color

Estimating Magnitude

Exponents of power law

Sensation	Exponent	
Loudness	0.6	
Brightness	0.33	
Smell	0.55 (Coffee) - 0.6 (Heptane)	
Taste	0.6 (Saccharine) -1.3 (Salt)	
Temperature	1.0 (Cold) – 1.6 (Warm)	
Vibration	0.6 (250 Hz) – 0.95 (60 Hz)	
Duration	1.1	
Pressure	1.1	
Heaviness	1.45	
Electic Shock	3.5	

[Psychophysics of Sensory Function, Stevens 61]

24

Apparent magnitude scaling

[Cartography: Thematic Map Design, Figure 8.6, p. 170, Dent, 96] $S = 0.98A^{0.87}$ [from Flannery 71]

Mackinlay's	ranking o	f encodings
QUANTITATIVE	ORDINAL	NOMINAL
Position Length Angle Slope Area (Size) Volume Density (Val) Color Sat Color Hue Texture Connection Containment Shape	Position Density (Val) Color Sat Color Hue Texture Connection Containment Length Angle Slope Area (Size) Volume Shape	Position Color Hue Texture Connection Containment Density (Val) Color Sat Shape Length Angle Slope Area Volume

Preattentive vs. Attentive

How many 3's

[based on slide from Stasko]

How many 3's

[based on slide from Stasko]

More preattentive features

Julesz & Bergen [1983]; Wolfe et al. [1992] Triesman & Gormican [1988] Julesz [1985] Line (blob) orientation Length Width Julesz [1985]
Triesman & Gelade [1980]
Triesman & Gormican [1988]
Julesz [1985]; Trick & Pylyshyn [1994]
Julesz & Bergen [1983]
Julesz & Bergen [1983]
Enns [1986]; Triesman & Souther [1985]
Nagy & Sanchez [1990, 1992];
D'Zmura [1991]; Kawai et al. [1995];
Bauer et al. [1996]
Beck et al. [1983];
Triesman & Gormican [1988]
Julesz [1971] Size **Curvature** Number **Terminators** Intersection Closure Colour (hue) Intensity Julesz [1971] Nakayama & Silverman [1986]; Driver & McLeod [1992] Wolfe & Franzel [1988] **Flicker Direction of motion** Binocular lustre Nakayama & Silverman [1986] Enns [1990] Enns [1990] Stereoscopic depth 3-D depth cues Lighting direction http://www.csc.ncsu.edu/faculty/healey/PP/index.html

Multiple Attributes

One-dimensional: Shape					
			1		
	Square		Circle		
	Circle		Circle		
	Circle		Square		
	Square		Circle		
	Circle		Circle		

Speeded classification

Redundancy gain

Facilitation in reading one dimension when the other provides redundant information

Filtering interference

Difficulty in ignoring one dimension while attending to the other

Types of dimensions

Integral

Filtering interference and redundancy gain

Separable

No interference or gain

Configural

Only interference, but no redundancy gain

Asymmetrical

One dimension separable from other, not vice versa Stroop effect – Color naming influenced by word identity, but word naming not influenced by color

52

VALUE IN MILLIONS OF DOLLARS 1-25 26-50 51-100 101-200 201-500 Value In Millions OF Dollars Value In Millions OF Dollars Value In Millions OF Dollars 1-25 26-50 51-100 101-200 201-500

W. S. Dobson, Visual information processing and cartographic communication: The role

of redundant stimulus dimensions, 1983 (reprinted in MacEachren, 1995)

Gestalt

60

Principles

- figure/ground
- proximity
- similarity
- symmetry
- connectedness
- continuity
- closure
- common fate
- transparency

Layering and Small Multiples

Signal and background compete above, as an electrocardiogram traceline becomes caught up in a thick grid. Below, the screened-down grid stays behind traces from each of 12 monitoring leads:⁴

Electrocardiogram tracelines [from Tufte 90]

74

Layering: Gridlines

Stravinsky score [from Tufte 90]

Change detection

82

Rensink's demonstration

http://www.csc.ncsu.edu/faculty/healey/PP/index.html

Summary

Choosing effective visual encodings requires knowledge of visual perception

Visual features/attributes

- Individual attributes often preattentive
- Multiple attributes may be separable, often integral

Gestalt principles provide higher level design guidelines

We don't always see everything that is there