Perception

Maneesh Agrawala

CS 448B: Visuclization
Winter 2020

1

Announcements

Assignment 3: Dynamic Queries

Create a small interactive dynamic query application similar to Homefinder, but for South Bay Restaurant Dała.

1. Implement interface
2. Submit the application and a short write-up on canvas

Can work alone or in pairs Due before class on Feb 10, 2020

4

Mackinlay's effectiveness criteria

Effectiveness

A visualization is more effective than another visualization if the information conveyed by one visualization is more readily perceived than the information in the other visualization.

Mackinlay's ranking of encodings

QUANTITATIVE
Position
Length
Angle
Slope
Area (Size)
Volume
Density (Val)
Color Sat
Color Hue
Texture
Connection
Containment
Shape

ORDINAL
Position
Density (Val)
Color Sat
Color Hue
Texture
Connection
Containment
Length
Angle
Slope
Area (Size)
Volume
Shape

NOMINAL
Position
Color Hue
Texłure
Connection
Containment
Density (Val)
Color Sat
Shape
Length
Angle
Slope
Area
Volume

```
    Topics
    Signal Detection
    Magnitude Estimation
    Pre-Attentive Visual Processing
    Using Multiple Visual Encodings
    Gestalt Grouping
    Change Blindness
```


Dełection

Detecting brightness

Which is brighter?

Detecting brightness

$(128,128,128)$

(130, 130, 130)

Which is brighter?

Just noticeable difference

JND（Weber＇s Law）

$$
\Delta S=k \frac{\Delta I}{I}
$$

－Ratios more important than magnitude
－Most continuous variations in stimuli are perceived in discrete steps

\square

12

Information in color and value

Value is perceived as ordered
\therefore Encode ordinal variables（O）

\therefore Encode continuous variables（Q）［not as well］

Hue is normally perceived as unordered
\therefore Encode nominal variables（ \mathbf{N} ）using color

Steps in font size

Sizes standardized in 16 $^{\text {th }}$ century

14

Estimating Magniłude

18

Steven's power law

$$
S=I^{p}
$$

$p<1$: underestimate p > 1 : overestimate

[graph from Wilkinson 99, based on Stevens 61]

Exponents of power law

Sensation	Exponent
Loudness	0.6
Brightness	0.33
Smell	0.55 (Coffee) -0.6 (Heptane)
Taste	0.6 (Saccharine) -1.3 (Salt)
Temperature	1.0 (Cold) -1.6 (Warm)
Vibration	0.6 (250 Hz) -0.95 (60 Hz)
Duration	1.1
Pressure	1.1
Heaviness	1.45
Electic Shock	3.5

Apparent magnitude scaling

[Carłography: Thematic Map Design, Figure 8.6, p. 170, Dent, 96]

$$
S=0.98 \mathrm{~A}^{0.87} \text { [from Flannery 71] }
$$

Proportional symbol map

[Carłography: Thematic Map Design, Figure 8.8, p. 172, Dent, 96]

Graduated sphere map

FIGURE 7.4. An eye-catching map created using three-dimensional geometric symbols. (After Smith, 1928. First published in The Geographical Review, 18(3), plate 4. Reprinted with permission of the American Geographical Society.)

Cleveland and McGill

[Cleveland and McGill 84]

Figure 3. Graphs from position-angle experiment.
[Cleveland and McGill 84]

31

Relative magnitude estimation

Most accurate

33

Mackinlay's ranking of encodings

QUANTITATIVE
Position
Length
Angle
Slope
Area (Size)
Volume
Density (Val)
Color Sat
Color Hue
Texture
Connection
Containment
Shape

ORDINAL
Position
Density (Val)
Color Sat
Color Hue
Texture
Connection
Containment
Length
Angle
Slope
Area (Size)
Volume
Shape

NOMINAL
Position
Color Hue
Texture
Connection
Containment
Density (Val)
Color Sat
Shape
Length
Angle
Slope
Ared
Volume

Preattentive vs. Attentive

How many 3's

> 1281768756138976546984506985604982826762 98098858458224509856458945098450980943585 90911030209905959595772564675050678904567 8845789809821677654876364908560912949686

How many 3' s

$$
\begin{aligned}
& 1281768756138976546984506985604982826762 \\
& 9809858458224509856458945098450980943585 \\
& 9091030209905959595772564675050678904567 \\
& 8845789809821677654876364908560912949686
\end{aligned}
$$

Visual pop-out: Color

http://www.csc.ncsu.edu/faculty/healey/PP/index.html

Visual pop-out: Shape

htip://www.csc.ncsu.edu/faculty/healey/PP/index.html

39

Feature conjunctions

http://www.csc.ncsu.edu/faculty/healey/PP/index.html

Preattentive features

[Information Visualization. Figure 5. 5 Ware 04]

More preattentive features

Line (blob) orientation	Julesz \& Bergen [1983]; Wolfe et al. [1992
Length	Triesman \& Gormican [1988]
Width	Julesz [1985]
Size	Triesman \& Gelade [1980]
Curvature	Triesman \& Gormican [1988]
Number	Julesz [1985]; Trick \& Pylyshyn [1994]
Terminators	Julesz \& Bergen [1983]
Intersection	Julesz \& Bergen [1983]
Closure	Enns [1986]; Triesman \& Souther [1985]
Colour (hue)	Nagy \& Sanchez [1990, 1992]; D'Zmura [1991]; Kawai et al. [1995];
	Bauer et al. [1996]
Intensity	Beck et al. [1983];
	Triesman \& Gormican [1988]
Flicker	Julesz [1971]
Direction of motion	Nakayama \& Silverman [1986];
Binocular lustre	Driver \& Mrceod [1992]
Stereoscopic depth	Nakayama \& Silverman [1986]
3-D depth cues	Enns [1990]
Lighting direction	Enns [1990]

Feature-integration theory

Feature maps for orientation \& color [Green]

Treisman's feature integration model [Healey04]

44

Multiple Attributes

One-dimensional: Lightness

White

White
Black

White
Black
\square
\square White

Black
Black

White
White

One-dimensional: Shape

\square

Square
Circle
Circle
Square
Circle

Circle
Circle

Square

Circle

Circle

Correlated dims: Shape or lightness

	Circle
	Square
	Square
	Circle
	Square

	Circle
	Square
	Square
	Square
	Circle

48

Speeded classification

50

Speeded classification

Redundancy gain
Facilitation in reading one dimension when the other provides redundant information

Filtering interference
Difficulty in ignoring one dimension while attending to the other

Types of dimensions

Integral

Filtering interference and redundancy gain

Separable

No interference or gain

Configural

Only interference, but no redundancy gain

Asymmetrical

One dimension separable from other, not vice versa
Stroop effect - Color naming influenced by word identity, but word naming not influenced by color

Correlated dims: Size and value

VALUE IN MILLIONS OF DOLLARS

VALUE IN MILLIONS OF DOLLARS

W. S. Dobson, Visual information processing and cartographic communication: The role of redundant stimulus dimensions, 1983 (reprinted in MacEachren, 1995)

Othogonal dims: Aspect ratio

FIGURE 3.38. An example of the use of an ellipse as a map symbol in which the horizontal and vertical axes represent different (but presumably related) variables.

Orientation and Size (Single Mark)

FIGURE 3.36. A map of temperature and precipitation using symbol size and orientation to represent data values on the two variables.

How well can you see temperature or precipitation? Is there a correlation between the two?

Shape and Size

FIGURE 3.40. The bivariate temperature-precipitation map of Figure 3.36, this time using point symbols that vary in shape and size to represent the two quantities.

Easier to see one shape across multiple sizes than one size of across multiple shapes?

Summary of Integral-Separable

[Figure 5.25, Color Plate 10, Ware 00]

Gestalt

Principles

- figure/ground
- proximity
- similarity
- symmetry
\square connectedness
- continuity
- closure
- common fate
- transparency

Figure/Ground

Ambiguous

Principle of surroundedness

Principle of relative size

64

Similarity

Rows dominate due to similarity [from Ware 04]

Symmetry

Bilateral symmetry gives strong sense of figure [from Ware 04]

Connectedness

Connectedness overrules proximity, size, color shape [from Ware 04]

Continuity

We prefer smooth not abrupt changes [from Ware 04]

68

Continuity: Vector fields

Prefer field that shows smooth continuous contours [from Ware 04]

Closure

We see a circle behind a rectangle, noł a broken circle [from Ware 04]

Illusory contours [from Durand 02]

Common fate

http://coe.sdsu.edu/eet/articles/visualpercl/start.htm

Transparency

Requires continuity and proper color correspondence [from Ware 04]

72

Layering and Small Multiples

Layering: Gridlines

Signal and background compete above, as an electrocardiogram traceline becomes caught up in a thick grid. Below, the screened-down grid stays behind traces from each of 12 monitoring leads: ${ }^{4}$

Electrocardiogram tracelines [from Tufte 90]

Layering: Gridlines

Stravinsky score [from Tufte 90]

Setting Gridline Contrast

How light can gridlines be and remain visible? How dark can gridlines be and not distract?

Safe setting: 20\% Alpha
[Stone \& Bartram 2009]

76

Layering: Color and line width

IBM Series III Copier [from Tufte 90]

Small multiples

[Figure 2.11, p. 38, MacEachren 95]

Small multiples

Operating trains. Redrawn by Tufte to
emphasize colored lights. [fromTufte 90]

Change blindness

[Example from Palmer 99, originally due to Rock]

Change detection

Change detection

82

Summary

Choosing effective visual encodings requires knowledge of visual perception

Visual features/attributes

- Individual attributes often preattentive
- Multiple attributes may be separable, often integral

Gestalt principles provide higher level design guidelines

We don' t always see everything that is there

